.shareit

Home // ALLIED

IIT Bombay Develops Nano Material Converting 97% Sunlight Into Heat

BY Realty Plus

Share It

Scientists at the Indian Institute of Technology, Bombay, (IIT Bombay) have developed a new material that can convert sunlight into heat energy with unprecedented efficiency.

The material, called nanostructured hard-carbon florets (NCFs), is made by depositing carbon onto a substrate of amorphous dendritic fibrous nanosilica (DFNS), using a technique called chemical apour deposition. The resulting material absorbs more than 97 per cent of the ultraviolet, visible and infrared light, and converts this them into thermal energy. The heat produced can be transferred to either air or water for practical applications.

The researchers have demonstrated that hollow copper tubes coated with NCFs can heat the air flow through them to over 346K. They have also demonstrated its ability to convert water into vapour with an efficiency of 186 per cent, the highest ever recorded. NCFs have outperformed all other competition when it comes to efficient conversion of the sun’s energy. “One metre square of NCF coatings converts 5 litres of water in an hour, that is at least 5 times better than commercial solar stills,” says Prof C Subramaniam.

To efficiently harness solar thermal energy and convert it to usable heat, a material should possess two essential yet somewhat conflicting qualities. First, it should be able to effectively transform a significant portion of incoming light particles, known as photons, into heat in a process called photon thermalisation. Second, it must retain this heat without losing it through thermal conductivity and radiation.

When incoming photons strike a material, they set the material’s atoms into motion, creating oscillations called phonons, which then propagate through the material, spreading the heat. Materials with high phonon thermal conductivity transmit heat quickly but also tend to lose a significant portion of the absorbed heat. An ideal heat absorber should exhibit both high photon thermalisation and low phonon thermal conductivity. This is precisely what the NCFs offer.

The nanoparticle structure of NCFs resemble marigold flowers consisting of interconnected small carbon cones. This unique structure enables two crucial features: strong phonon activation when photons hit the material and low phonon thermal conductivity.

The NCF is highly efficient in converting sunlight into heat energy. The materials used to make NCFs are readily available, and the manufacturing technique easily scalable, making large-scale manufacturing of these florets commercially inexpensive. Once manufactured, NCFs can be spray-painted onto almost any surface, reducing the cost of application and maintenance as well.

The team has already begun the process of commercialising the product by setting up a company at the Society for Innovation and Entrepreneurship (SINE) at IIT Bombay. The company will focus on scaling up the manufacturing of NCFs and developing NCF-based devices required for water heating and space-heating.

Share It

Tags : Scientists Indian Institute of Technology Bombay IIT Bombay dendritic fibrous nanosilica nanostructured hard-carbon florets Society for Innovation and Entrepreneurship SINE