Common problems that arise as a result of incompatibility between cement and water reducers are: rapid loss of workability, excessive quickening / retardation of setting, and low rates of strength gain. Very often, there even exists incompatibility between a particular chemical and a certain batch of the same (otherwise compatible) cement, indicating that the nature of the problem is complex, and needs further understanding.
Moreover, high performance concretes, which are in wide use today, almost always incorporate a mineral admixture or filler, such as silica fume, fly ash and limestone powder. This further complicates the physico-chemical behaviour of the cement-based system since the mineral admixtures play an important role in the evolution of the hydration reactions and the availability of free water during the early ages of concrete.
Super Plasticizers (SP)
Super Plasticizers are high range water reducers and are incorporated in concrete either to maintain the same workability at reduced water cement ratio (w/c) or to increase the workability by maintaining constant w/c. After the introduction of the first generation of superplasticizers (SPs) in the 1960s, these products have become essential for the placement of concrete in areas with low accessibility or with high density of reinforcement, as well as to provide an increase in the pumpability of concrete.
The newly developed concretes, such as self compacting concrete, require the presence of a superplasticizer to achieve the desired properties. SPs are generally supplied as liquid formulations, with the active solids content in the range of 30–40%. Currently, the most widely used superplasticizers are the sulphonated formaldehyde condensates and the polycarboxylates.
Problems arising out of compatibility issues are often mistaken for problems with concrete mixture design because of the lack of information about the subject amongst practicing engineers.
The incompatibility Issues
The term incompatibility refers to the adverse effect on performance when a specific combination of cement and superplasticizer is used. Common problems include flash setting, delayed setting, rapid slump loss, improper strength gain, etc. These issues in turn could affect the hardened properties of concrete, primarily strength and durability.
The use of superplasticizers has become very common in India. It is very difficult to ensure that an admixture that produces all the desired effects with Cement A would do the same with Cement B. Incompatibility could also arise as a result of the use of additional mineral additives, or while using combinations of chemicals.
Users, who are unaware of compatibility issues, often suffer when the supply of cement and/or admixture is changed midway through a project. Admixture manufacturers try to overcome the problem by formulating project-specific chemicals. Obviously, this is only a short term solution. For a more comprehensive approach, a thorough understanding of the causes and remedies of incompatibility is necessary.
Factors Affecting Compatibility
- Effect of Chemical Structure of SP: The maximum adsorption of SP depends on the chemical composition of the cement, as well as the chemical structure of the super plasticizer (SP). When a higher amount of SP is adsorbed, there is better initial fluidity but the fluidity may not be maintained sufficiently over time. In such cases, the dosage of the SP has to be increased to provide an additional amount for maintaining the fluidity. The formation of air bubbles in the cement paste due to the incorporation of the SP can also help in its fluidification but could also reduce the strength and durability if the air content is high. Different types of admixtures have differing influences on air entrainment in concrete.
- Cement composition and fineness: The finer the cement, the higher the specific surface area, and consequently, the water demand for a given workability is also expected to be higher. The amount of SP required for certain workability would be higher for finer cement. The amount of SP adsorbed would also depend on the fineness, with finer cements causing more SP adsorption.
- Jayasree,

_pages-to-jpg-0001.jpg)








